Solar + Li-Ion Power Supply Unit

This week we started  testing our brand new solar charger PSU design. The solar PSU powers a WiSense WSN1120L node operating in full function device (FFD) mode. FFDs are involved in mesh  routing and therefore need to keep their radio on at all times.  The WSN1120L’s current consumption in this mode is around 31 mA  in normal receive mode and  around 50 mA  when transmitting at +13 dBm.

The solar PSU also supports continuous measurement of the panel voltage and current as well as the battery voltage and current. This data is being sent every 5 minutes to the  cloud. See the graphs at the end.

The  PSU supports panels with voltage output up to 10.5V. The PSU allows charge current of  up to 2 A which allows high capacity Li-Ion batteries to be charged by high wattage panels.



Test Panel Specs

  • Peak  power: 3  Watts
  • Voltage output at peak power point: 8.5V
  • Current output at peak power point: 300 mA

Test Battery Specs

  • Chemistry:  Single  cell Lithium-Ion Battery
  • Capacity: 1100  mAh
  • Output voltage: 3.7 V  (nominal), 4.2 V (full charge)

Charger PSU Board Specs

  • Max  input voltage:  10.5 V
  • Max charge current: 2  A
  • Max  battery discharge  current: 4 A
  • Li-Ion battery charged in 3 phases (trickle charge,  pre-charge, constant  current and constant voltage).
  • Battery under-voltage lockout supported as load is not connected directly to battery.
  • Charger IC can power the load and charge the battery simultaneously.
  • Multiple output voltages
    • 3.3V  (Max 1 A)
    • 4.9V (Max 50 mA)
    • Li-Ion battery output (Max 4A). This supply is gated by a load switch which can be controlled by a signal external to the PSU (for example – by an external micro-controller).
  • On board  current and  voltage sensors which measure the following  parameters:
    • Solar  panel output voltage (Available over I2C)
    • Solar  panel output current  (Available over I2C)
    • Battery voltage  (Available over I2C)
    • Battery current  (Available over I2C)
  • PCB specs
    • Layers: 4
    • Dimensions:  53 mm x 48 mm
    • Mounting holes:  4
    • Finish:  ENIG

Here is  a pic of  the  setup. You can  see the 3W  panel lying flat and connected to a weather proof enclosure containing the PSU, battery and an WSN1120L. This location is not the best with tall structures/buildings in the vicinity.


Snapshot of battery voltage and current (captured from WiSight running on AWS).



For more information on our products, please visit

Posted on February 28, 2017, in Uncategorized. Bookmark the permalink. 1 Comment.

  1. Nice to see real-world data and learn about constant current/voltage phases of battery charging.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: